

Background

(1/2)

- Objectives of roadway designs
 - Safety
 - Efficiency
 - Human and natural environment fit
- Need to evaluate alternatives
- Trade off geometric elements
- Guidelines vs. standards

Research Objectives

 Understand relationships and quantify trade offs for design elements

 Develop information resources and decision tools for designers

Study Approach

- Literature review
 Data acquisition and analysis
 Model development and evaluation
- Guideline development

IK

Final report

Research Focus

- Multi-lane rural roads
- Data of interest
 - Lane width
 - Shoulder width and type
 - Median width and type
 - Clear zone

Literature Review

- Safety implications from design element trade offs
- Not much on multi-lane rural roads
- Highway Safety Manual AMF values

2 lane rural roads

Data

- Data for MN, CA, KY
- 1991-2002 period
- Data of interest
 - Lane width
 - Shoulder width and type
 - Median width and type
 - Clear zone (KY only)

Data Distribution

Variable	СА	MN	KY
Length (mi)	835.84	975.16	576.08
Segments	2,726	4,385	930
Number of crashes	30,413	16,244	30,788
Number of injury crashes	7,676	2,173	10,428
Segments with no crashes	68%	80%	63%

Data Issues

- Data issues
 - Princ. Arterial
 - 4 lanes
 - 12-ft lanes
 - 8-ft shoulders
- Guidelines for 4-lane rural roads with 12-foot lanes

IK

Negative binomial
 E[N] = Le^{b0+b1 InADT+ b2X2+b3X3+...+bnXn}
 where E[N] number of crashes per year
 L segment length
 ADT average daily traffic
 Xi explanatory variables

- Variables considered
 - Functional class
 - Right shoulder paved
 - Left turn lane presence
 - Median barrier presence
 - Shoulder width
 - Median width

(3/5)

(4/5)

- Accident Modification Factors (AMF)
 - Use coefficients
 - $AMF = e^{bi}$

• $b_i = 0.407$ then AMF = $e^{0.407} = 1.50$

- Guidelines
 - Review NCHRP 633 models
 - Appraise current knowledge
 - Consult HSM models
 - Use expert panel review
 - Recommend AMF

(5/5)

Shoulder Width AMF

	Average shoulder width (ft)						
Category	0	3	4	5	6	7	8
Undivided	1.22	1.00	0.94	0.87	0.82	0.76	0.71
Divided	1.17	1.00	0.95	0.9	0.85	0.81	0.77

Notes: AMF for all crashes and severities

Divided: Left and right shoulder widths

Undivided: Right shoulders widths

Medians

- Median effect
 - Cross median crashes
 - Median related crashes
 - Total effect unknown
- Median barrier presence

UK

Median Width AMF

Median width (ft) Category 10 20 30 40 50 70 60 80 Multi-vehicle 1.00 0.91 0.83 0.75 0.68 0.62 0.57 0.51

Notes: AMF for all severities

No effect on single vehicle crashes

Median Barrier

- Impact on crashes unknown
 - Increase due to presence
 - Decrease on severity
 - Median barrier type
 - Median barrier placement
- Data and models inconclusive

NCHRP 633 vs. HSM

- Shoulder width
 - Similar trends
 - Divided: Same magnitude
 - Undivided: Larger differences
 - No AMF for shoulders over 8 feet
 - HSM shoulder related crashes only

(1/2)

NCHRP 633 vs. HSM

- Median width
 - Similar trends
 - HSM smaller reductions
 - HSM median related only crashes and barrier present

(2/2)

Conclusions

- AMF can be used for all crashes
- All for 4-lane rural roads with 12ft lanes

- Itianes
- Supportive of HSM
- Additional work on median barrier
 - Type and placement
 - Crash types and severity